Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento').

Identifieur interne : 002E89 ( Main/Exploration ); précédent : 002E88; suivant : 002E90

Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento').

Auteurs : Xiaohua Su [République populaire de Chine] ; Yanguang Chu ; Huan Li ; Yingjie Hou ; Bingyu Zhang ; Qinjun Huang ; Zanmin Hu ; Rongfeng Huang ; Yingchuan Tian

Source :

RBID : pubmed:21931776

Descripteurs français

English descriptors

Abstract

Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana 'Guariento') harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional research is needed to fully understand the relationships between the altered phenotypes and the function of each transgene in multigene transformants.

DOI: 10.1371/journal.pone.0024614
PubMed: 21931776
PubMed Central: PMC3170361


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento').</title>
<author>
<name sortKey="Su, Xiaohua" sort="Su, Xiaohua" uniqKey="Su X" first="Xiaohua" last="Su">Xiaohua Su</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. suxh@caf.ac.cn</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chu, Yanguang" sort="Chu, Yanguang" uniqKey="Chu Y" first="Yanguang" last="Chu">Yanguang Chu</name>
</author>
<author>
<name sortKey="Li, Huan" sort="Li, Huan" uniqKey="Li H" first="Huan" last="Li">Huan Li</name>
</author>
<author>
<name sortKey="Hou, Yingjie" sort="Hou, Yingjie" uniqKey="Hou Y" first="Yingjie" last="Hou">Yingjie Hou</name>
</author>
<author>
<name sortKey="Zhang, Bingyu" sort="Zhang, Bingyu" uniqKey="Zhang B" first="Bingyu" last="Zhang">Bingyu Zhang</name>
</author>
<author>
<name sortKey="Huang, Qinjun" sort="Huang, Qinjun" uniqKey="Huang Q" first="Qinjun" last="Huang">Qinjun Huang</name>
</author>
<author>
<name sortKey="Hu, Zanmin" sort="Hu, Zanmin" uniqKey="Hu Z" first="Zanmin" last="Hu">Zanmin Hu</name>
</author>
<author>
<name sortKey="Huang, Rongfeng" sort="Huang, Rongfeng" uniqKey="Huang R" first="Rongfeng" last="Huang">Rongfeng Huang</name>
</author>
<author>
<name sortKey="Tian, Yingchuan" sort="Tian, Yingchuan" uniqKey="Tian Y" first="Yingchuan" last="Tian">Yingchuan Tian</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21931776</idno>
<idno type="pmid">21931776</idno>
<idno type="doi">10.1371/journal.pone.0024614</idno>
<idno type="pmc">PMC3170361</idno>
<idno type="wicri:Area/Main/Corpus">002C89</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C89</idno>
<idno type="wicri:Area/Main/Curation">002C89</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C89</idno>
<idno type="wicri:Area/Main/Exploration">002C89</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento').</title>
<author>
<name sortKey="Su, Xiaohua" sort="Su, Xiaohua" uniqKey="Su X" first="Xiaohua" last="Su">Xiaohua Su</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. suxh@caf.ac.cn</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chu, Yanguang" sort="Chu, Yanguang" uniqKey="Chu Y" first="Yanguang" last="Chu">Yanguang Chu</name>
</author>
<author>
<name sortKey="Li, Huan" sort="Li, Huan" uniqKey="Li H" first="Huan" last="Li">Huan Li</name>
</author>
<author>
<name sortKey="Hou, Yingjie" sort="Hou, Yingjie" uniqKey="Hou Y" first="Yingjie" last="Hou">Yingjie Hou</name>
</author>
<author>
<name sortKey="Zhang, Bingyu" sort="Zhang, Bingyu" uniqKey="Zhang B" first="Bingyu" last="Zhang">Bingyu Zhang</name>
</author>
<author>
<name sortKey="Huang, Qinjun" sort="Huang, Qinjun" uniqKey="Huang Q" first="Qinjun" last="Huang">Qinjun Huang</name>
</author>
<author>
<name sortKey="Hu, Zanmin" sort="Hu, Zanmin" uniqKey="Hu Z" first="Zanmin" last="Hu">Zanmin Hu</name>
</author>
<author>
<name sortKey="Huang, Rongfeng" sort="Huang, Rongfeng" uniqKey="Huang R" first="Rongfeng" last="Huang">Rongfeng Huang</name>
</author>
<author>
<name sortKey="Tian, Yingchuan" sort="Tian, Yingchuan" uniqKey="Tian Y" first="Yingchuan" last="Tian">Yingchuan Tian</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Plants, Genetically Modified (drug effects)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Plants, Genetically Modified (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Salt Tolerance (genetics)</term>
<term>Salt Tolerance (physiology)</term>
<term>Sodium Chloride (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chlorure de sodium (pharmacologie)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
<term>Sécheresses (MeSH)</term>
<term>Tolérance au sel (génétique)</term>
<term>Tolérance au sel (physiologie)</term>
<term>Végétaux génétiquement modifiés (effets des médicaments et des substances chimiques)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
<term>Végétaux génétiquement modifiés (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Salt Tolerance</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Tolérance au sel</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chlorure de sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Tolérance au sel</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Salt Tolerance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Real-Time Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana 'Guariento') harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional research is needed to fully understand the relationships between the altered phenotypes and the function of each transgene in multigene transformants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21931776</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento').</ArticleTitle>
<Pagination>
<MedlinePgn>e24614</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0024614</ELocationID>
<Abstract>
<AbstractText>Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana 'Guariento') harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional research is needed to fully understand the relationships between the altered phenotypes and the function of each transgene in multigene transformants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Xiaohua</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. suxh@caf.ac.cn</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chu</LastName>
<ForeName>Yanguang</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Huan</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Yingjie</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Bingyu</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Qinjun</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Zanmin</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Rongfeng</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Yingchuan</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>09</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt Tolerance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>11</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>08</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21931776</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0024614</ArticleId>
<ArticleId IdType="pii">PONE-D-10-04549</ArticleId>
<ArticleId IdType="pmc">PMC3170361</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Feb 9;1510(1-2):307-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11342168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 6;277(36):33334-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12080058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Oct 15;1375(1-2):36-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9767096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 Nov;161(11):1211-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15602813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crop Sci. 2002 Jan;42(1):131-140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11756263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Feb;29(2):273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Apr;51(345):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2003 Jul;1(4):287-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Apr;6(4):561-570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Aug;8(8):363-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Nov;55(407):2447-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15475373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):618-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Sep;47(1-2):295-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11554478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jan;107(1):125-130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 May 5;268(5211):716-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7732380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1953-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1988 Jun;76(1):51-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Jan 14;287(5451):303-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1995 Aug 5;47(3):347-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18623410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Mar;27(3):411-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18026957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 1998 Mar;36(3):175-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9516547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2005 Mar;3(2):141-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2008 Nov;35(4):753-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18379856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15898-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 1999 Jan;17(1):21-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10098274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15270-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17881564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Mar;20(3):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2006 Feb;15(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16475006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 1;23(15):1805-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19651988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Apr;18(2):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10363370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1997 Mar;15(3):244-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9062923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16450-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17923671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Feb;77(2):483-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(4):751-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668766</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Chu, Yanguang" sort="Chu, Yanguang" uniqKey="Chu Y" first="Yanguang" last="Chu">Yanguang Chu</name>
<name sortKey="Hou, Yingjie" sort="Hou, Yingjie" uniqKey="Hou Y" first="Yingjie" last="Hou">Yingjie Hou</name>
<name sortKey="Hu, Zanmin" sort="Hu, Zanmin" uniqKey="Hu Z" first="Zanmin" last="Hu">Zanmin Hu</name>
<name sortKey="Huang, Qinjun" sort="Huang, Qinjun" uniqKey="Huang Q" first="Qinjun" last="Huang">Qinjun Huang</name>
<name sortKey="Huang, Rongfeng" sort="Huang, Rongfeng" uniqKey="Huang R" first="Rongfeng" last="Huang">Rongfeng Huang</name>
<name sortKey="Li, Huan" sort="Li, Huan" uniqKey="Li H" first="Huan" last="Li">Huan Li</name>
<name sortKey="Tian, Yingchuan" sort="Tian, Yingchuan" uniqKey="Tian Y" first="Yingchuan" last="Tian">Yingchuan Tian</name>
<name sortKey="Zhang, Bingyu" sort="Zhang, Bingyu" uniqKey="Zhang B" first="Bingyu" last="Zhang">Bingyu Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Su, Xiaohua" sort="Su, Xiaohua" uniqKey="Su X" first="Xiaohua" last="Su">Xiaohua Su</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002E89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21931776
   |texte=   Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento').
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21931776" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020